題目
Given an array nums. We define a running sum of an array as runningSum[i] = sum(nums[0]…nums[i]).
Return the running sum of nums.
Example 1:
1Input: nums = [1,2,3,4]
2Output: [1,3,6,10]
3Explanation: Running sum is obtained as follows: [1, 1+2, 1+2+3, 1+2+3+4].
Example 2:
1Input: nums = [1,1,1,1,1]
2Output: [1,2,3,4,5]
3Explanation: Running sum is obtained as follows: [1, 1+1, 1+1+1, 1+1+1+1, 1+1+1+1+1].
Example 3:
1Input: nums = [3,1,2,10,1]
2Output: [3,4,6,16,17]
Constraints:
$$
\begin{array}{l}
1 <= nums.length <= 1000 \\
-10^6 <= nums[i] <= 10^6
\end{array}
$$
我的思路
第 i 個 runningSum 等於 nums[0] + … + nums[i-1] + nums[i];
而 nums[0] + nums[i-1] 等於 runningSum[i-1];
所以可以得到 runningSum[i] = runningSum[i-1] + nums[i];
程式碼
1class Solution {
2 public int[] runningSum(int[] nums) {
3 int[] runningSum = new int[nums.length];
4 runningSum[0] = nums[0];
5 for(int i = 1; i < nums.length; i++) {
6 runningSum[i] = runningSum[i-1] + nums[i];
7 }
8 return runningSum;
9 }
10}
評論